Resumen
La identificación de animales a nivel individual es clave para estudios de abundancia, densidad y parámetros de dinámica poblacional de la vida silvestre, como reproducción y supervivencia. Wildbook es una base de datos gratuita y online que se emplea para identificar una amplia gama de especies a nivel individual comparando sus marcas individuales en fotografías, proporcionadas ya sea por esfuerzos de ciencia ciudadana o por monitoreo pasivo. Aquí presentamos el primer registro del uso de la plataforma Whiskerbook para identificar especies manchadas en América del Sur. Los datos fueron obtenidos en el monitoreo por cámaras trampa durante 5 años en la Estación Ecológica Terra do Meio en Brasil, con en media 60 cámaras instaladas por año y un total de 20.668 días de registros fotográficos. Tuvimos identificaciones de al menos 78 ocelotes a lo largo de los cinco años de monitoreo, de un total de 810 registros de cámaras trampa. Las recapturas se registraron a partir de cuatro años y siempre ocurrieron dentro del año siguiente a la primera captura. También se registraron recapturas dentro del mismo año y lugar para 17 individuos de ocelote y las co-ocurrencias sugirieron que se registró un promedio de 3,7 individuos compartiendo 14 cámaras a lo largo de los años. A pesar de las limitaciones, Whiskerbook ha demostrado ser una gran herramienta para cuestiones de conservación, y su potencial debería ser explorado más a fondo por investigadores de vida silvestre.
Citas
Ahumada JA, Fegraus E, Birch T, Flores N, Kays R, O’Brien TG, Palmer J, Schuttler S, Zhao JY, Jetz W, Kinnaird M, Kulkarni S, Lyet A, Thau D, Duong M, Oliver R, Dancer A. 2020. Wildlife Insights: A Platform to Maximize the Potential of Camera Trap and Other Passive Sensor Wildlife Data for the Planet. Environmental Conservation 47(1):1-6. https://doi.org/10.1017/S0376892919000298
Alves NV, Maia CM, Alves TR, Fonseca RCB. 2019. Medium and large-sized mammals in an Atlantic Forest fragment of Brazil: recording of threatened species. Journal of Threatened Taxa 11(3): 13278–13286. https://doi.org/10.11609/jott.4480.11.3.13278-13286
Araujo G, Agustines A, Bach SS, Cochran JE, Parra-Galván E, Parra-Venegas R, Diamant S, Dove A, Fox S, Graham RT, Green SM, Green JR, Hardenstine RS, Hearn A, Himawan MR, Jaidah MY, Labaja J, Leblond S, Legaspi CG, Maguiño R, Magson K, Marcoux SD, Marcous TM, Marley SA, Matalobos M, Mendonza A, Miranda JA, Norman BM, Perry CT, Pierce SJ, Ponzo A, Prebble CEM, Ramirez-Macías D, Rees R, Reeve-Arnold KE, Reynolds SD, Robinson DP, Rohner CA, Rowat D, Snow S, Vásquez-Haikin A, Watts AM. 2022. Improving sightings-derived residency estimation for whale shark aggregations: A novel metric applied to a global data set. Frontiers in Marine Science 9. https://doi.org/10.3389/fmars.2022.775691
Ávilla-Villegas H, Sánchez-Ávilla G, Ávilla-Villegas S. 2023. Recent record of ocelot (Leopardus pardalis) in Monte Grande, Aguascalientes, after 12 years. The Southwest. Naturalist 67(1):62-64). https://doi.org/10.1894/0038-4909-67.1.62
Berger-Wolf TY, Rubinstein DI, Stewart CV, Holmberg JA, Parham J, Menon S. 2017. Wildbook: Crowdsourcing,computer vision,and data science for conservation. https://arxiv.org/pdf/1710.08880.pdf Accessed on 21 December 2023.
Bohnett E, Faryabi SP, Lewison R, An L, Bian X, Rajabi AM, Jaheb N, Rooyesh H, Mills E, Ramos S, Mesniildrey N, Perez CMS, Taylor J, Terentyev V, Ostrowski, S..2023. Human expertise combined with artificial intelligence improves performance of snow leopard camera trap studies. Global Ecology and Conservation 41: e02350. https://doi.org/10.1016/j.gecco.2022.e02350
Burgstaller S, Gollmann G, Landler L. 2021. The Green Toad example: a comparison of pattern recognition software. North-West. Journal of Zoology 17:96-99. https://doi.org/10.21203/rs.3.rs-76239/v1
Camarena-Ibarrola A, Figueiroa K, Tejeda H, Valero L. 2019. Ocelot identification through spots. Multimedia Tools and Applications 78:26239–26262. https://doi.org/10.1007/s11042-019-07837-1
Crall JP, Stewart CV, Berger-Wolf TY, Rubinstein DI, Sundaresan SR. 2013. HotSpotter-Patterned Species Instance Recognition. Winter Conference on Applications of Computer Vision. http://cs.rpi.edu/hotspotter/crall-hotspotter-wacv-2013.pdf. Accessed on 21 December 2023.
de Paula MJ, Carvalho-Jr EAR, Lopes CKM, Wariss M, Barboza RSL, Braga FCA, Félix-Silva D, Peres CA, Pezzuti JCB. 2022. Hunting sustainability within two eastern Amazon Extractive Reserves. Environmental Conservation. 49(2):90-98. https://doi.org/10.1017/S0376892922000224
Gonzalez‐Borrajo N., López‐Bao J.V., Palomares F. 2017. Spatial ecology of jaguars, pumas, and ocelots: a review of the state of knowledge. Mammal Review 47(1):62-75. http://doi.org/10.1111/mam.12081.
Johansson O, Samelius G, Wikberg E, Chapron G, Mishra C, Low M. 2020. Identification errors in camera-trap studies result in systematic population overestimation. Scientific Reports 10(1):6393 https://doi.org/10.1038/s41598-020-63367-z
Lombardi JV, Sergeyev M, Tewes ME, Schofield LR, Wilkins RN. 2022. Spatial capture-recapture and LiDAR-derived vegetation metrics reveal high densities of ocelots on Texas ranchlands. Frontiers in Conservation Science 3:1003044. https://doi.org/10.3389/fcosc.2022.1003044
Lorm T, Horswill C, Rabaiotti D, Ewers R, Groom R, Watermeyer J, Woodroffe R. 2023. Optimizing the automated recognition of individual animals to support population monitoring. Ecology and Evolution. 13:e10260. https://doi.org/10.1002/ece3.10260
Mendonça EN, Albernaz AL, Lopes AMC, Carvalho-Jr EAR. 2022. Jaguar density in the most threatened ecoregion of the Amazon. Mammalia 87:209-213. https://doi.org/10.1515/mammalia-2022-0058.
Nepovinnykh E, Eerola T, Biard V, Mutka P, Niemi M, Kunnasranta M, Kälviäinen H. 2022. SealID: Saimaa Ringed Seal Re-Identification Dataset. Sensors 22(19):7602. https://doi.org/10.3390/s22197602
Nipko RB, Holcombe BE, Kelly MJ. 2020. Identifying Individual Jaguars and Ocelots via Pattern‐Recognition Software: Comparing HotSpotter and Wild‐ID. Wildlife Society Bulletin 44(2). https://doi.org/10.1002/wsb.1086.
Osterrieder SK, Kent CS, Anderson CJR, Parnum IM, Robinson RW. 2015. Whisker spot patterns: a noninvasive method of individual identification of Australian sea lions (Neophoca cinerea). Journal of Mammalogy 6(5):988–997. https://doi.org/10.1093/jmammal/gyv102
Paviolo A, Crawshaw P, Caso A, de Oliveira T, Lopez-Gonzalez CA, Kelly M, de Angelo C, Payan E. 2015. Leopardus pardalis. The IUCN Red List of Threatened Species 2015. http://www.iucnredlist.org/details/full/11509/0 Accessed on 20 December 2023
Petso T, Jamisola Jr, RS, Mpoeleng D. 2021. Review on methods used for wildlife species and individual identification. European Journal of Wildlife Research 68:3. https://doi.org/10.1007/s10344-021-01549-4
Rovero F, Martin E, Rosa M, Ahumada JA, Spitale D. 2014. Estimating species richness and modeling habitat preferences of tropical forest mammals from camera trap data. PLoS One 9(10): e110971. https://doi.org/10.1371/journal.pone.0110971
Sollmann, R.; Furtado, M.M.; Gardner, B.; Hofer, H.; Jácomo, A.T.A.; Tôrres, N.M.; Silveira, L. 2011. Improving density estimates for elusive carnivores: accounting for sexspecific detection and movements using spatial capture-recapture models for jaguars in central Brazil. Biology Conservation 144:1017–1024. https://doi.org/10.1016/j.biocon.2010.12.011
Schwartzman S, Boas AV, Ono KY, Fonseca MG, Doblas J, Zimmerman B, Junqueira P, Jerozolimski A, Salazar M, Junqueira RP, Torres M. 2013. The natural and social history of the indigenous lands and protected areas corridor of the Xingu River basin. Philosophical Transactions of the Royal Society B 368(1619):20120164. https://doi.org/10.1098/rstb.2012.0164
Sternberg MA, Schmidt GM, Carrera-Treviño R, Ocañas-Garcia OA, Illescas-Martínez F, deMaar T, Peña LJ. 2023. Characteristics of ocelot populations in Tamaulipas, Mexico, using capture−recapture techniques. Endangered Species. Research 52:113–127. https://doi.org/10.3354/esr01271
Stopić, S. 2021. Photo Identification of Eurasian lynx (Lynx lynx L.) in Gorsk Kotar. Dissertation, Polytechnic in Karlovac.
Tropical Ecology, Assessment and Monitoring Network. 2011. Terrestrial Vertebrate Protocol Implementation Manual. vol. 3. Arlington, Texas. USA: Conservation International
US Fish and Wildlife Service. 2016. Recovery plan for the ocelot (Leopardus pardalis). https://www.fws.gov/southwest/es/arizona/Documents/SpeciesDocs/Ocelot/Ocelot_Final_Recovery_Plan_Signed_July_2016_new.pdf Accessed on 22 December 2023.
Verschueren S, Fabiano EC, Kakove M, Cristescu B, Marker L. 2022. Reducing identification errors of African carnivores from photographs through computer-assisted workflow. Mammalian Research 68:121-125 https://doi.org/10.1007/s13364-022-00657-z
Wiig O, Teixeira KS, Sena L, Oliveira HCS, Mendes-Oliveira AC. 2023. Identifying individual jaguars from camera-trap images using the HotSpotter program. Mammalia. 87:602-605. https://doi.org/10.1515/mammalia-2023-0071
Wolff N.M, Ferreguetti A.C, Tomas W.M, Bergallo H.G. 2019. Population density, activity pattern and habitat use of the ocelot Leopardus pardalis in an Atlantic Forest protected area, South eastern, Brazil. Hystrix, It. Journal of Mammalogy 30(2):120-125. https://doi.org/10.4404/hystrix-00214-2019