Índice de abundancia relativa y tasa de encuentro con trampas cámara
PDF

Palabras clave

monitoreo
mamíferos
detectabilidad
modelos jerárquicos
trampa camara

Cómo citar

Mandujano, Salvador. 2024. «Índice De Abundancia Relativa Y Tasa De Encuentro Con Trampas cámara». Mammalogy Notes 10 (1), 389. https://doi.org/10.47603/mano.v10n1.389.
Recibido 2023-10-09
Aceptado 2023-12-15
Publicado 2024-02-02

Resumen

El monitoreo de fauna silvestre se basa en conteos directos o indirectos de animales o sus rastros, en unidades de muestreo (cámaras, transectos, trampas, redes, grabadores, u otro). Los conteos por unidad o esfuerzo de muestreo se expresan como tasa de encuentro, tasa fotográfica, tasa de captura, etc. Cuando se asume que la tasa está relacionada con el tamaño poblacional, entonces es considerada como un índice de abundancia relativa (IAR). Los cuales son empleados como alternativa a las estimaciones absolutas de la abundancia o densidad. Los IAR son utilizados para monitorear el cambio de una población a través del tiempo, o bien para comparar poblaciones de la misma especie en localidades diferentes. Con el incremento en el uso de las cámaras trampa se ha popularizado el cálculo de los IAR para todas las especies fotografiadas en el área de estudio. Sin embargo, se debe tener precaución con esta interpretación ya que los IAR están sesgados por la detectabilidad que varía entre especies. En este artículo se 1) reviso las definiciones, los supuestos y las limitaciones de los IAR; 2) explica la diferencia conceptual entre los IAR y las tasas de encuentro; 3) enfatiza la importancia de la probabilidad de detección como factor que afecta a los conteos y por ende a las tasas de encuentro; 4) sugiere usar los IAR solo para comparar a la misma especie temporal y espacialmente, mientras que la tasa de encuentro usarla para comparar entre especies; y 5) sugiero algunas alternativas de análisis estadísticos basados en modelos jerárquicos.

https://doi.org/10.47603/mano.v10n1.389
PDF

Citas

Acevedo P, Ferreres J, Jaroso R, Durán M. 2010. Estimating roe deer abundance from pellet group counts in Spain: An assessment of methods suitable for Mediterranean woodlands. Ecological Indicators 10(6):1226-1230. https://doi.org/10.1016/j.ecolind.2010.04.006

Álvarez-Córdova F, Fernández JA, Camargo-Sanabria AA, Ontiveros JC, Titulaer M. 2022. Relative abundance, habitat selection, and diet of the coyote in northern México. Therya 13(3):253-258. https://doi.org/10.12933/therya-22-2184

Anile S, Devillard S. 2016. Study design and body mass influence RAIs from camera trap studies: evidence from the felidae. Animal Conservation 19(1):35–45. https://doi.org/10.1111/acv.12214

Archaux F, Henry PY, Gimenez O. 2012. When can we ignore the problem of imperfect detection in comparative studies?. Methods in Ecology and Evolution 3(1):188-194. https://doi.org/10.1111/j.2041-210X.2011.00142.x

Arroyo-Arce S, Thomson I, Fernández C, Salom-Pérez R. 2017. Relative abundance and activity patterns of terrestrial mammals in Pacuare Nature Reserve, Costa Rica. UNED Research Journal 9(1):15-21.

Bachl FE, Lindgren F, Borchers DL, Illian JB. 2019. inlabru: an R package for Bayesian spatial modelling from ecological survey data. Methods in Ecology and Evolution 10(6):760-766. https://doi.org/10.1111/2041-210X.13168

Barnes RFW. 2001. How reliable are dung counts for estimating elephant numbers? African Journal of Ecology 39:1-9. https://doi.org/10.1111/j.1365-2028.2001.00266.x

Beaudrot L, Ahumada J, O'Brien TG, Jansen PA. 2019. Detecting tropical wildlife declines through camera-trap monitoring: an evaluation of the Tropical Ecology Assessment and Monitoring protocol. Oryx 53(1):126-129. https://doi.org/10.1017/S0030605318000546[Opens in a new window]

Blake JG, Mosquera D, Loiselle BA, Swing K, Romo D. 2017. Long-term variation in abundance of terrestrial mammals and birds in eastern Ecuador as measured by photographic rates and occupancy estimates. Journal of Mammalogy 98(4):1168–78. https://doi.org/10.1093/jmammal/gyx046

Boitani L. 2016. Camera Trapping for Wildlife Research. Pelagic Publishing Ltd.

Broadley K, Burton AC, Avgar T, Boutin S. 2019. Density-dependent space use affects interpretation of camera trap detection rates. Ecology and Evolution 9(24):14031–41. https://doi.org/10.1002/ece3.5840

Buenrostro A, Osciel SA, García-Grajales J. 2020. Daily activity patterns and relative abundance of medium and large mammals in a communal natural protected area on the central coast of Oaxaca, Mexico. International Journal of Biodiversity and Conservation 12(3):159-168. https://doi.org/10.5897/IJBC2020.1399

Burgas A, Amit R, Lopez BC. 2014. Do attacks by jaguars Panthera onca and pumas Puma concolor (Carnivora: Felidae) on livestock correlate with species richness and relative abundance of wild prey? Revista de Biología Tropical 62(4):1459-1467.

Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, Boutin S. 2015. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52(3):675-685. https://doi.org/10.1111/1365-2664.12432

Camino M, Thompson J, Andrade L, Cortez S, Matteucci SD, Altrichter M. 2020. Using local ecological knowledge to improve large terrestrial mammal surveys, build local capacity and increase conservation opportunities. Biological Conservation 244:108450. https://doi.org/10.1016/j.biocon.2020.108450

Caravaggi A. 2017. remBoot: an R package for random encounter modelling. Journal of Open Source Software 2(10):176. https://doi.org/10.21105/joss.00176

Caughley G. 1977. Analysis of vertebrate populations. Wiley, Lond, UK.

Caughley G, Sinclair ARE. 1994. Wildlife ecology and management. Boston, Blackwell Scientific.

Chauvenet ALM, Gill RMA, Smith GC, Ward AI, Massei G. 2017. Quantifying the bias in density estimated from distance sampling and camera trapping of unmarked individuals. Ecological Modelling 350(24):79–86. https://doi.org/10.1016/j.ecolmodel.2017.02.007

Conn PB, Bailey LL, Sauer JR. 2004. Indexes as surrogates to abundance for low-abundance species. In: Thompson WL, editor, Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters. Washington, DC: Island Press, p. 59-74.

Conner MC, Labisky RF, Progulske DR. 1983. Scent-station indices as measures of population abundance for bobcats, raccoons, gray Foxes, and opossums. Wildlife Society Bulletin 11(2):146–52. https://www.jstor.org/stable/3781036

Coulson GM, Raines JA. 1985. Methods for small-scale surveys of grey kangaroo populations. Australian Wildlife Research 12(2):119-125. https://doi.org/10.1071/WR9850119

Davis DE, Winstead RL. 1980. Estimating the numbers of wildlife populations. In: Schemnitz S.D., editor. Widlife management techniques manual. Fourth edition. The Widlife Society. Washington, D. C. p. 221-245.

Denes FV, Silveira LF, Beissinger SR. 2015. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods in Ecology and Evolution 6(5):543-556. https://doi.org/10.1111/2041-210X.12333

Doser JW, Finley AO, Kéry M, Zipkin EF. 2022. spOccupancy: An R package for single‐species, multi‐species, and integrated spatial occupancy models. Methods in Ecology and Evolution 13(8):1670-1678. https://raco.cat/index.php/ABC/article/view/57160

Eberhardt LL, Simmons MA. 1987. Calibration population indices by doubling sampling. Journal of Wildlife Management 51:665–675. https://doi.org/10.2307/3801286

Efford MG, Dawson DK, Robbins CS. 2004. DENSITY: software for analysing capture-recapture data from passive detector arrays. Animal Biodiversity and Conservation 27(1):217-228. https://raco.cat/index.php/ABC/article/view/57160

Efford M. 2022. secr: Spatially explicit capture-recapture models. R package version 4.5.3, https://CRAN.R-project.org/package=secr

Efford MG. 2023. ipsecr: An R package for awkward spatial capture–recapture data. Methods in Ecology and Evolution 14(5):1182-1189. https://doi.org/10.1111/2041-210X.14088

Farris, SC, Waddle JH, Hackett CE, Brandt LA, Mazzotti FJ. 2021. Hierarchical models improve the use of alligator abundance as an Indicator. Ecological Indicators 133:e108406. https://doi.org/10.1016/j.ecolind.2021.108406

Forsyth DM, Barker RJ, Morriss G, Scroggie MP. 2007. Modeling the relationship between fecal pellet indices and deer density. Journal of Wildlife Management 71:964-970. https://doi.org/10.2193/2005-695

Fleming P, Meek PI, Ballard G, Banks P, Claridge A, Sanderson J, Swann D. 2014. Camera trapping: wildlife management and research. Australia: CSIRO Publishing.

Gómez-Valencia B, Montenegro O. 2016. Densidad, abundancia relativa u ocupación del pecari de collar? optimizando el esfuerzo de muestreo. Mastozoologia Neotropical 23(2):543-550.

González-Maya JF, Schipper J, Rojas-Jiménez K. 2009. Elevational distribution and abundance of Baird’s tapir (Tapirus bairdii) at different protection areas in Talamanca region of Costa Rica. Tapir Conservation 18(25):29-35.

Gopalaswamy AM, Royle, JA, Hines JE, Singh P, Jathanna D, Kumar NS, Karanth KU. 2012. Program SPACECAP: software for estimating animal density using spatially explicit capture–recapture models. Methods in Ecology and Evolution 3(6):1067-1072. https://doi.org/10.1111/j.2041-210X.2012.00241.x

Greenwood JJD, Robinson RA. 2006. General census methods. In: Sutherland WJ, editor. Ecological Census Techniques. Cambridge University Press. p. 87-185.

Green AM, Chynoweth MW, Şekercioğlu ÇH. 2020. Spatially explicit capture-recapture through camera trapping: a review of benchmark analyses for wildlife density estimation. Frontiers in Ecology and Evolution 8:e563477. https://doi.org/10.3389/fevo.2020.563477

Guillera-Arroita G. 2017. Modelling of species distributions, range dynamics and communities under Imperfect detection: advances, challenges and opportunities. Ecography 40(2):281–95. https://doi.org/10.1111/ecog.02445

Hamel S, Killengreen ST, Henden JA, Eide NE, Roed‐Eriksen L, Ims RA, Yoccoz NG. 2013. Towards good practice guidance in using camera‐traps in ecology: influence of sampling design on validity of ecological inferences. Methods in Ecology and Evolution 4(2):105-113. https://doi.org/10.1111/j.2041-210x.2012.00262.x

Harmsen BJ, Foster RJ, Silver S, Ostro L, Doncaster CP. 2010. Differential use of trails by forest mammals and the implications for camera‐trap studies: a case study from Belize. Biotropica, 42(1):126-133. https://doi.org/10.1111/j.1744-7429.2009.00544.x

Hilbe JM. 2014. Modeling count data. Cambridge University Press.

Hines JE. 2006. PRESENCE2: Software to estimate patch occupancy and related parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html

Howe EJ, Buckland ST, Després‐Einspenner ML, Kühl HS. 2017. Distance sampling with camera traps. Methods in Ecology and Evolution 8(11):1558-1565. https://doi.org/10.1111/2041-210X.12790

Iijima H. 2020. A Review of wildlife abundance estimation models: comparison of models for correct application. Mammal Study 45(3):177–88. https://doi.org/10.3106/ms2019-0082

Karels TJ, Koppel L, Hik DS. 2004. Fecal pellet counts as a technique for monitoring an alpine-dwelling social rodent, the hoary marmot (Marmota caligata). Arctic, Antarctic, and Alpine Research 36(4):490-494. https://doi.org/10.1657/1523-0430

Kays R, Arbogast BS, Baker‐Whatton M, Beirne C, Boone HM, Bowler M, Santiago F. Burneo, Cove MV, Ding P, Espinosa S, Sousa Gonçalves AL, Hansen CP, Jansen PA, Kolowski JM, Knowles TW, Moreira Lima MG, Millspaugh J, McShea WJ, Pacifici K, Parsons AW, Pease BS, Rovero F, Santos F, Schuttler SG, Sheil D, Si X, Snider M, Spironello WR. 2020. An empirical evaluation of camera trap study design: How many, how long and when?. Methods in Ecology and Evolution 11(6):700-713. https://doi.org/10.1111/2041-210X.13370

Kellner KF, Fowler NL, Petroelje TR, Kautz TM, Beyer Jr DE, Belant JL. 2022. ubms: An R package for fitting hierarchical occupancy and N‐mixture abundance models in a Bayesian framework. Methods in Ecology and Evolution 13(3):577-584. https://doi.org/10.1111/2041-210X.13777

Kellner KF, Smith AD, Royle JA, Kéry M, Belant JL, Chandler RB. 2023. The unmarked R package: Twelve years of advances in occurrence and abundance modelling in ecology. Methods in Ecology and Evolution Methods 14:1408–1415. https://doi.org/10.1111/2041-210X.14123

Kéry M, Royle JA. 2016. Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness in R and BUGS: Volume 1: Basic models. Academic Press.

Kéry M, Royle JA. 2020. Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness in R and BUGS: Volume 2: Dynamic and advanced models. Academic Press.

Krebs CJ. 1985. Ecology: the experimental analysis of distribution and abundance. Nueva York: Harper & Row.

Kolowski JM, Oley J, McShea WJ. 2021. High‐density camera trap grid reveals lack of consistency in detection and capture rates across space and time. Ecosphere 12(2):e03350. https://doi.org/10.1002/ecs2.3350

Korner-Nievergelt F, Roth T, Von Felten S, Guélat J, Almasi B, Korner-Nievergelt P. 2015. Bayesian data analysis in ecology using linear models with R, BUGS, and Stan. Academic Press.

Lancia RA, Kendall WL, Pollock KH, Nichols JD. 1994. Estimating the number of animals in wildlife populations In: Braun CE, editor. Techniques for wildlife investigations and management. Wildlife Society, Bethesda, Maryland. p. 106-153.

Li X, Bleisch WV, Jiang X. 2018. Using large spatial scale camera trap data and hierarchical occupancy models to evaluate species richness and occupancy of rare and elusive wildlife communities in Southwest China. Diversity and Distributions 24(11):1560–72. https://doi.org/10.1111/ddi.12792

Li X, Tian H, Piao Z, Wang G, Xiao Z, Sun Y, Holyoak, M. 2022. cameratrapR: An R package for estimating animal density using camera trapping data. Ecological Informatics 69:e101597. https://doi.org/10.1016/j.ecoinf.2022.101597

Lijun C, Wenhong X, Zhishu, X. 2019. Limitations of relative abundance indices calculated from camera-trapping data. Biodiversity Science 27(3):243-248. https://doi.org/10.17520/biods.2018327

Link WA, Nichols JD. 1994. On the importance of sampling variance to investigations of temporal variation in animal size. Oikos 69:539-544. https://doi.org/10.2307/3545869

Linhart SB, Knowlton FF. 1975. Determining the relative abundance of coyotes by scent station lines. Wildlife Society Bulletin 3(3):119–24. https://www.jstor.org/stable/3781822

Liu X, Wu P, Songer M, Cai Q, He X, Zhu Y, Shao X. 2013. Monitoring wildlife abundance and diversity with infra-red camera traps in Guanyinshan Nature Reserve of Shaanxi Province, China. Ecological Indicators 33:121–28. https://doi.org/10.1016/j.ecolind.2012.09.022

Lizcano DJ. 2018. Trampas cámara como herramienta para estudiar mamíferos silvestres. Mammalogy Notes 5(1-2):31-35. https://doi.org/10.47603/manovol5n1.31-35

Luo G, Wei W, Dai Q, Ran J. 2020. Density estimation of unmarked populations using camera raps in heterogeneous space. Wildlife Society Bulletin 44(1):173–81. https://doi.org/10.1002/wsb.1060

MacKenzie DI, Kendall WL. 2002. How should detection probability be incorporated into estimates of relative abundance? Ecology 83(9):2387–93. https://doi.org/10.1890/0012-9658(2002)083%5B2387:HSDPBI%5D2.0.CO;2

MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey L, Hines JE. 2017. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press. https://doi.org/10.1016/C2012-0-01164-7

Mandujano S. 2005. Track count calibration to estimate density of white-tailed deer (Odocoileus virginianus) in Mexican dry tropical forest. The Southwestern Naturalist 50(2):223–29. https://doi.org/10.1894/0038-4909(2005)050%5B0223:TCCTED%5D2.0.CO;2

Mandujano S. 2017. Monitoreo de la biodiversidad de mamíferos en áreas naturales protegidas empleando cámaras-trampa: sugerencias de herramientas para la gestión y el análisis numérico de las fotos. Paraquaria Natural 5(1):20-29.

Mandujano S. 2019a. Analysis and trends of photo-trapping in Mexico: text mining in R. Therya 10(1):25-32. https://doi.org/10.12933/therya-19-666

Mandujano S. 2019b. Índice de abundancia relativa: RAI. In: Mandujano S, Pérez-Solano LA, eds.,Foto-trampeo en R: Organización y análisis de datos. Xalapa, Ver., México: Instituto de Ecología A. C.

Mandujano S. 2019c. Simulación de movimientos y efectos en la detección: sim_JW. In: Mandujano S, Pérez-Solano LA, eds.,Foto-trampeo en R: Organización y análisis de datos. Xalapa, Ver., México: Instituto de Ecología A. C.

Mandujano S. 2023. Beta version of the RAI_eR package, GitHub repository, https://github.com/SMandujanoR/RAI_eR. Updated: Nov 27, 2023.

Mandujano S, Pérez-Solano LA. 2019. Foto-trampeo en R: Organización y análisis de datos. Xalapa, Ver., México: Instituto de Ecología A. C.

Mann GK, O’Riain MJ, Parker DM. 2015. The road less travelled: assessing variation in mammal detection probabilities with camera traps in a semi-arid biodiversity hotspot. Biodiversity and Conservation, 24, 531-545. https://doi.org/10.1007/s10531-014-0834-z

Marchandeau S, Aubineau J, Berger F, Gaudin J-C, Roobrouck A, Corda E, Reitz F. 2006. Abundance indices: reliability testing is crucial-a field case of wild rabbit Oryctolagus cuniculus. Wildlife Biology 12(1):19–27. https://doi.org/10.2981/0909-6396(2006)12%5B19:AIRTIC%5D2.0.CO;2

Martin PS, Gheler-Costa C, Lopes PC, Rosalino LM, Verdade LM. 2012. Terrestrial non-volant small mammals in agro-silvicultural landscapes of Southeastern Brazil. Forest Ecology and Management 282:185–95. https://doi.org/10.1016/j.foreco.2012.07.002

Mathewson PD, Spehar SN, Meijaard E, Sasmirul A, Marshall AJ. 2008. Evaluating orangutan census techniques using nest decay rates: implications for population estimates. Ecological Applications 18(1):208–21. https://doi.org/10.1890/07-0385.1

McCaffery KR. 1976. Deer trail counts as an index to populations and habitat use. Journal of Wildlife Management 40(2):308-316. https://doi.org/10.2307/3800430

McClintock BT, Thomas L. 2019. Estimating abundance or occupancy from unmarked populations. In: Murray DL, Sandercock BT (Eds.). Population ecology in practice. Oxford: Wiley Blackwell. https://doi.org/10.2307/3800430

McDonald T, Nielson R, Carlisle J, Augustine B, Griswald J, Reynolds J, McDonald MT. 2015. Package Rdistance. Microsoft R Application Network. https://github.com/tmcd82070/Rdistance/wiki

McIntyre T, Majelantle TL, Slip DJ, Harcourt RG. 2020. Quantifying imperfect camera-trap detection probabilities: implications for density modelling. Wildlife Research 47(2):177–85. https://doi.org/10.1071/WR19040

Mendes-Oliveira AC, Peres CA, de A Maués PCR, Linhares-Oliveira G, Mineiro IGB, Silva de Maria SL, Lima RCS. 2017. Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna. PloS One 12(11):e0187650. https://doi.org/10.1371/journal.pone.0187650

Miller DL. 2016. Package Distance. Versión 0.9, 6. https://github.com/DistanceDevelopment/Distance/

Moeller AK, Lukacs PM, Horne JS. 2018. Three novel methods to estimate abundance of unmarked animals using remote cameras. Ecosphere 9(8):e02331. https://doi.org/10.1002/ecs2.2331

Moeller AK, Lukacs PM, Horne JS. 2022. spaceNtime: an R package for estimating abundance of unmarked animals using camera‐trap photographs. Mammalian Biology 102:581-590. https://doi.org/10.1007/s42991-021-00181-8

Mooty JJ, Karns PD, Heisey DM. 1984. The relationship between white-tailed deer track counts and pellet-group surveys. Journal of Wildlife Management 48(1):275-279. https://doi.org/10.2307/3808488

Monroy-Vilchis O, Rodríguez-Soto C, Zarco-González M, Urios V. 2009. Cougar and jaguar habitat use and activity patterns in central Mexico. Animal Biology 59(2):145-157. https://doi.org/10.1163/157075609X437673

Montalvo VH, Sáenz‐Bolaños C, Cruz‐Díaz JC, Kamilar JM, Carrillo E, Fuller TK. 2023. Effects of camera trap placement on photo rates of jaguars, their prey, and competitors in northwestern Costa Rica. Wildlife Society Bulletin 47(2):e1428. https://doi.org/10.1002/wsb.1428

Nakashima Y, Hongo S, Mizuno K, Yajima G, Dzefck ZSC. 2022. Double-observer approach with camera traps can correct imperfect detection and improve the accuracy of density estimation of unmarked animal populations. Scientific Reports 12(1):2011. https://doi.org/10.1038/s41598-022-05853-0

Neff DJ. 1968. The pellet-group count technique for big game trend, census, and distribution: a review. Journal of Wildlife Management 32(3):597-614. https://doi.org/10.2307/3798941

O’Brien TG. 2011. Abundance, density and relative abundance: A conceptual framework. In: O’Connell AF, Nichols JD, Karanth KU, editors. Camera traps in animal ecology: methods and analyses. Tokio, Japan: Springer.

O'Brien TG, Ahumada J, Akampurila E, Beaudrot L, Boekee K, Brncic T, Hickey J, Jansen PA, Kayijamahe C, Moore J, Mugerwa B, Mulindahabi F, Ndoundou-Hockemba M, Niyigaba P, Nyiratuza M, Opepa CK, Rovero F, Uzabaho E, Strindberg S. 2020. Camera trapping reveals trends in forest duiker populations in African National Parks. Remote Sensing in Ecology and Conservation 6(2):168-180. https://doi.org/10.1002/rse2.132

Ojasti J, Dallmeier F. 2000. Manejo de fauna silvestre neotropical (Vol. 5). Estados Unidos: Smithsonian Institution/MAB Program.

Palencia P, Rowcliffe JM, Vicente J, Acevedo P. 2021. Assessing the camera trap methodologies used to estimate density of unmarked populations. Journal of Applied Ecology 58(8):1583-1592. https://doi.org/10.1111/1365-2664.13913

Palencia P, Vicente J, Soriguer RC, Acevedo P. 2022. Towards a best‐practices guide for camera trapping: assessing differences among camera trap models and settings under field conditions. Journal of Zoology 316(3):197-208. https://doi.org/10.1111/jzo.12945

Palmer MS, Swanson A, Kosmala M, Arnold T, Packer C. 2018. Evaluating relative abundance indices for terrestrial herbivores from large‐scale camera trap surveys. African Journal of Ecology 56(4):791-803. . http://localhost:8383/jspui/handle/123456789/882

Pardo LE, Campbell MJ, Edwards W, Clements GR, Laurance WF. 2018. Terrestrial mammal responses to oil palm dominated landscapes in Colombia. PLoS One 13(5):e0197539. https://doi.org/10.1111/aje.12566

Perez-Irineo G, Santos-Moreno A. 2012. Diversidad de mamíferos terrestres de talla grande y media de una selva subcaducifolia del noreste de Oaxaca, Mexico. Revista Mexicana de Biodiversidad 83(1):164–69. http://localhost:8383/jspui/handle/123456789/882

Pérez-Irineo G, Santos-Moreno A. 2016. Abundance, herd size, activity pattern and occupancy of ungulates in Southeastern Mexico. Animal Biology 66(1):97-109. https://doi.org/10.1163/15707563-00002490

Pollock KH, Nichols JD, Simons TR, Farnsworth GL, Bailey LL, Sauer JR. 2002. Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics: The official journal of the International Environmetrics Society 13(2):105-119. https://doi.org/10.1002/env.514

Pollock KH, Marsh H, Bailey LL, Farnsworth GL, Simons TR, Alldredge MW. 2004. Separating components of detection probability in abundance estimation: an overview with diverse examples. In: Thompson WL, editor, Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters. Washington, DC: Island Press, p. 43-58.

Quispe-Lopez M, Barreda S, Marcelo-Carranza D, Pacheco V, Aponte H, Ramirez DW. 2021. Relative abundance and habitat selection of the montane Guinea pig Cavia tschudii in a wetland at coastal desert with comments on its predators. Therya 12(3):423-433. https://doi.org/10.12933/therya-21-1096

Rich LN, Miller DA, Muñoz DJ, Robinson HS, McNutt JW, Kelly MJ. 2019. Sampling design and analytical advances allow for simultaneous density estimation of seven sympatric carnivore species from camera trap data. Biological Conservation 233:12-20. https://doi.org/10.1016/j.biocon.2019.02.018

Ríos-Solís JA, Flores-Martínez JJ, Sánchez-Cordero V, Lavariega MC. 2021. Diversity and activity patterns of medium-and large-sized terrestrial mammals at the Los Tuxtlas Biosphere Reserve, México. Therya 12(2):237-248. https://doi.org/10.12933/therya-21-1105

Rivero K, Rumiz DI, Taber AB. 2004. Estimating brocket deer (Mazama gouazoubira and M. americana) abundance by dung pellet counts and other indices in seasonal Chiquitano forest habitats of Santa Cruz, Bolivia. European Journal of Wildlife Research 50:161-167. https://doi.org/10.1007/s10344-004-0064-x

Rizo-Aguilar A, Guerrero JA, Hidalgo-Mihart MG, González-Romero A. 2015. Relationship between the abundance of the endangered volcano rabbit Romerolagus diazi and vegetation structure in the Sierra Chichinautzin mountain range, Mexico. Oryx 49:360-365. https://doi.org/10.1017/S0030605313000975

Rovero F, Marshall AR. 2009. Camera trapping photographic rate as an index of density in forest ungulates. Journal of Applied Ecology 46(5):1011-1017. https://doi.org/10.1111/j.1365-2664.2009.01705.x

Rovero F, Zimmerman F. 2016. Camera trapping for wildlife research. Exeter: Pelagic Publishers, UK.

Rovero F, Zimmermann F, Berzi D, Meek P. 2013. Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix 24(2):148–156. https://doi.org/10.4404/hystrix-24.2-8789

Rowcliffe JM, Carbone C, Kays R, Kranstauber B, Jansen PA, Meek P, Fleming P. 2014. Density estimation using camera trap surveys: the random encounter model. Camera trapping: wildlife management and research. CSIRO Publishing, Melbourne, Australia, p. 317-324.

Royle JA, Chandler RB, Sollmann R, Gardner B. 2013. Spatial capture-recapture. Academic Press.

Royle JA, Dorazio RM. 2008. Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press.

Royle JA, Nichols JD, Karanth KU, Gopalaswamy AM. 2009. A hierarchical model for estimating density in camera-trap studies. Journal of Applied Ecology 46(1):118–27. https://doi.org/10.1111/j.1365-2664.2008.01578.x

Sollmann R, Mohamed A, Samejima H, Wilting A. 2013. Risky business or simple solution– relative abundance indices from camera-trapping. Biological Conservation 159:405–12. https://doi.org/10.1016/j.biocon.2012.12.025

Soto-Werschitz A, Mandujano, S, Passamani M. 2023. Influence of forest type on the diversity, abundance, and naïve occupancy of the mammal assemblage in the southeastern Brazilian Atlantic Forest. Therya 14(3):329-341. https://doi.org/10.12933/therya-23-4991

Srbek-Araujo AC, Chiarello AG. 2013. Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil. Biota Neotropica 13: 51-62.

Stachowicz I, Ferrer-Paris JR, Quiroga-Carmona M, Moran L, Lozano C. 2020. Baseline for monitoring and habitat use of medium to large non-volant mammals in Gran Sabana, Venezuela. Therya 11(2):169–79. https://doi.org/10.12933/therya-20-891

Stratton C, Sepulveda AJ, Hoegh A. 2020. msocc: Fit and analyse computationally efficient multi‐scale occupancy models in R. Methods in Ecology and Evolution 11(9):1113-1120. https://doi.org/10.1111/2041-210X.13442

Sutherland C, Royle JA, Linden DW. 2019. oSCR: a spatial capture–recapture R package for inference about spatial ecological processes. Ecography 42(9):1459-1469. https://doi.org/10.1111/ecog.04551

Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP. 2010. Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47(1):5–14. https://doi.org/10.1111/j.1365-2664.2009.01737.x

Tobler MW, Carrillo-Percastegui SE, Pitman RL, Mares R, Powell G. 2008. An evaluation of camera traps for inventorying large-and medium-sized terrestrial rainforest mammals. Animal Conservation 11(3):169–78. https://doi.org/10.1111/j.1469-1795.2008.00169.x

Torres-Porras J, Cobos E, Seoane JM, Aguirre N. 2017. Large and medium-sized mammals of Buenaventura Reserve, Southwestern Ecuador. CheckList 13(4):35-45. https://doi.org/10.15560/13.4.35

Treves A, Mwima P, Plumptre AJ, Isoke S. 2010. Camera-trapping forest–woodland wildlife of Western Uganda reveals how gregariousness biases estimates of relative abundance and distribution. Biological Conservation 143(2):521–28. https://doi.org/10.1016/j.biocon.2009.11.025

Vallecillo D, Gauthier‐Clerc M, Guillemain M, Vittecoq M, Vandewalle P, Roche B, Champagnon J. 2021. Reliability of animal counts and implications for the interpretation of trends. Ecology and Evolution 11(5):2249-2260. https://doi.org/10.1002/ece3.7191

Viscarra ME, Ayala, GM, Ticona, H, Wallace RB. 2022. Relative abundance and activity patterns of mesomammals in central Andes. Therya 13(3):265-275. https://doi.org/10.12933/therya-22-1175

White GC. 2005. Correcting wildlife counts using detection probabilities. Wildlife Research 32(3):211–16. https://doi.org/10.1071/WR03123

White GC. 2008. Closed population estimation models and their extensions in Program MARK. Environmental and Ecological Statistics 15:89-99. https://doi.org/10.1007/s10651-007-0030-3

Yamaura Y, Kery M, Royle AJ. 2016. Study of biological communities subject to imperfect detection: bias and precision of community N-mixture abundance models in small-sample situations. Ecological Research 31(3):289–305. https://doi.org/10.1007/s11284-016-1340-4

Zou F, Zhang Q, Zhang M, Lee M-B, Wang X, Gong Y, Yang C. 2019. Temporal patterns of three sympatric pheasant species in the Nanling Mountains: N-mixture modeling applied to detect abundance. Avian Research 10(1):1–10. https://doi.org/10.1186/s40657-019-0181-6

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.

Descargas

La descarga de datos todavía no está disponible.