Identifying ocelots by individual coat pattern marks using the Whiskerbook
PDF
XML

Keywords

whiskerbook
identification
population
individual
spot patterns

How to Cite

Gurjão Pinheiro do Val, Helena, Juarez Carlos Brito Pezzuti, and Elildo Alves Ribeiro Carvalho-Jr. 2024. “Identifying Ocelots by Individual Coat Pattern Marks Using the Whiskerbook”. Mammalogy Notes 10 (2), 413. https://doi.org/10.47603/mano.v10n2.413.
Received 2024-02-19
Accepted 2024-06-17
Published 2024-09-02

Abstract

The identification of animals at an individual-level is the key for studies of wildlife abundance, density, and population dynamics parameters, such as reproduction and survival. The Wildbook is an online and free database employed to identify a wide range of species at the individual-level by comparing their individual marks in photographs, provided either by citizen science endeavors or passive monitoring. Here, we present the first record of the use of the Whiskerbook platform to identify spotted species in South America. The data was obtained by the camera trap monitoring performed at the Ecological Station Terra do Meio in Brazil throughout five years, with an average of 60 cameras/year and a total of 20.668 days of records. We identified at least 78 ocelots along the five years of monitoring, from a total of 810 camera trap records. Recaptures were recorded from four years and occurred always within one year from the first capture. Recaptures were also recorded within the same year and place for 17 ocelot individuals and co-occurrences suggested that a mean of 3.7 individuals were recorded sharing 14 cameras over the years. Despite Whiskerbook’s limitations, it has demonstrated to be a promising tool for conservation issues, and its potential should be further explored by wildlife researchers.

https://doi.org/10.47603/mano.v10n2.413
PDF
XML

References

Ahumada JA, Fegraus E, Birch T, Flores N, Kays R, O’Brien TG, Palmer J, Schuttler S, Zhao JY, Jetz W, Kinnaird M, Kulkarni S, Lyet A, Thau D, Duong M, Oliver R, Dancer A. 2020. Wildlife Insights: A Platform to Maximize the Potential of Camera Trap and Other Passive Sensor Wildlife Data for the Planet. Environmental Conservation 47(1):1-6. https://doi.org/10.1017/S0376892919000298

Alves NV, Maia CM, Alves TR, Fonseca RCB. 2019. Medium and large-sized mammals in an Atlantic Forest fragment of Brazil: recording of threatened species. Journal of Threatened Taxa 11(3): 13278–13286. https://doi.org/10.11609/jott.4480.11.3.13278-13286

Araujo G, Agustines A, Bach SS, Cochran JE, Parra-Galván E, Parra-Venegas R, Diamant S, Dove A, Fox S, Graham RT, Green SM, Green JR, Hardenstine RS, Hearn A, Himawan MR, Jaidah MY, Labaja J, Leblond S, Legaspi CG, Maguiño R, Magson K, Marcoux SD, Marcous TM, Marley SA, Matalobos M, Mendonza A, Miranda JA, Norman BM, Perry CT, Pierce SJ, Ponzo A, Prebble CEM, Ramirez-Macías D, Rees R, Reeve-Arnold KE, Reynolds SD, Robinson DP, Rohner CA, Rowat D, Snow S, Vásquez-Haikin A, Watts AM. 2022. Improving sightings-derived residency estimation for whale shark aggregations: A novel metric applied to a global data set. Frontiers in Marine Science 9. https://doi.org/10.3389/fmars.2022.775691

Ávilla-Villegas H, Sánchez-Ávilla G, Ávilla-Villegas S. 2023. Recent record of ocelot (Leopardus pardalis) in Monte Grande, Aguascalientes, after 12 years. The Southwest. Naturalist 67(1):62-64). https://doi.org/10.1894/0038-4909-67.1.62

Berger-Wolf TY, Rubinstein DI, Stewart CV, Holmberg JA, Parham J, Menon S. 2017. Wildbook: Crowdsourcing,computer vision,and data science for conservation. https://arxiv.org/pdf/1710.08880.pdf Accessed on 21 December 2023.

Bohnett E, Faryabi SP, Lewison R, An L, Bian X, Rajabi AM, Jaheb N, Rooyesh H, Mills E, Ramos S, Mesniildrey N, Perez CMS, Taylor J, Terentyev V, Ostrowski, S..2023. Human expertise combined with artificial intelligence improves performance of snow leopard camera trap studies. Global Ecology and Conservation 41: e02350. https://doi.org/10.1016/j.gecco.2022.e02350

Burgstaller S, Gollmann G, Landler L. 2021. The Green Toad example: a comparison of pattern recognition software. North-West. Journal of Zoology 17:96-99. https://doi.org/10.21203/rs.3.rs-76239/v1

Camarena-Ibarrola A, Figueiroa K, Tejeda H, Valero L. 2019. Ocelot identification through spots. Multimedia Tools and Applications 78:26239–26262. https://doi.org/10.1007/s11042-019-07837-1

Crall JP, Stewart CV, Berger-Wolf TY, Rubinstein DI, Sundaresan SR. 2013. HotSpotter-Patterned Species Instance Recognition. Winter Conference on Applications of Computer Vision. http://cs.rpi.edu/hotspotter/crall-hotspotter-wacv-2013.pdf. Accessed on 21 December 2023.

de Paula MJ, Carvalho-Jr EAR, Lopes CKM, Wariss M, Barboza RSL, Braga FCA, Félix-Silva D, Peres CA, Pezzuti JCB. 2022. Hunting sustainability within two eastern Amazon Extractive Reserves. Environmental Conservation. 49(2):90-98. https://doi.org/10.1017/S0376892922000224

Gonzalez‐Borrajo N., López‐Bao J.V., Palomares F. 2017. Spatial ecology of jaguars, pumas, and ocelots: a review of the state of knowledge. Mammal Review 47(1):62-75. http://doi.org/10.1111/mam.12081.

Johansson O, Samelius G, Wikberg E, Chapron G, Mishra C, Low M. 2020. Identification errors in camera-trap studies result in systematic population overestimation. Scientific Reports 10(1):6393 https://doi.org/10.1038/s41598-020-63367-z

Lombardi JV, Sergeyev M, Tewes ME, Schofield LR, Wilkins RN. 2022. Spatial capture-recapture and LiDAR-derived vegetation metrics reveal high densities of ocelots on Texas ranchlands. Frontiers in Conservation Science 3:1003044. https://doi.org/10.3389/fcosc.2022.1003044

Lorm T, Horswill C, Rabaiotti D, Ewers R, Groom R, Watermeyer J, Woodroffe R. 2023. Optimizing the automated recognition of individual animals to support population monitoring. Ecology and Evolution. 13:e10260. https://doi.org/10.1002/ece3.10260

Mendonça EN, Albernaz AL, Lopes AMC, Carvalho-Jr EAR. 2022. Jaguar density in the most threatened ecoregion of the Amazon. Mammalia 87:209-213. https://doi.org/10.1515/mammalia-2022-0058.

Nepovinnykh E, Eerola T, Biard V, Mutka P, Niemi M, Kunnasranta M, Kälviäinen H. 2022. SealID: Saimaa Ringed Seal Re-Identification Dataset. Sensors 22(19):7602. https://doi.org/10.3390/s22197602

Nipko RB, Holcombe BE, Kelly MJ. 2020. Identifying Individual Jaguars and Ocelots via Pattern‐Recognition Software: Comparing HotSpotter and Wild‐ID. Wildlife Society Bulletin 44(2). https://doi.org/10.1002/wsb.1086.

Osterrieder SK, Kent CS, Anderson CJR, Parnum IM, Robinson RW. 2015. Whisker spot patterns: a noninvasive method of individual identification of Australian sea lions (Neophoca cinerea). Journal of Mammalogy 6(5):988–997. https://doi.org/10.1093/jmammal/gyv102

Paviolo A, Crawshaw P, Caso A, de Oliveira T, Lopez-Gonzalez CA, Kelly M, de Angelo C, Payan E. 2015. Leopardus pardalis. The IUCN Red List of Threatened Species 2015. http://www.iucnredlist.org/details/full/11509/0 Accessed on 20 December 2023

Petso T, Jamisola Jr, RS, Mpoeleng D. 2021. Review on methods used for wildlife species and individual identification. European Journal of Wildlife Research 68:3. https://doi.org/10.1007/s10344-021-01549-4

Rovero F, Martin E, Rosa M, Ahumada JA, Spitale D. 2014. Estimating species richness and modeling habitat preferences of tropical forest mammals from camera trap data. PLoS One 9(10): e110971. https://doi.org/10.1371/journal.pone.0110971

Sollmann, R.; Furtado, M.M.; Gardner, B.; Hofer, H.; Jácomo, A.T.A.; Tôrres, N.M.; Silveira, L. 2011. Improving density estimates for elusive carnivores: accounting for sexspecific detection and movements using spatial capture-recapture models for jaguars in central Brazil. Biology Conservation 144:1017–1024. https://doi.org/10.1016/j.biocon.2010.12.011

Schwartzman S, Boas AV, Ono KY, Fonseca MG, Doblas J, Zimmerman B, Junqueira P, Jerozolimski A, Salazar M, Junqueira RP, Torres M. 2013. The natural and social history of the indigenous lands and protected areas corridor of the Xingu River basin. Philosophical Transactions of the Royal Society B 368(1619):20120164. https://doi.org/10.1098/rstb.2012.0164

Sternberg MA, Schmidt GM, Carrera-Treviño R, Ocañas-Garcia OA, Illescas-Martínez F, deMaar T, Peña LJ. 2023. Characteristics of ocelot populations in Tamaulipas, Mexico, using capture−recapture techniques. Endangered Species. Research 52:113–127. https://doi.org/10.3354/esr01271

Stopić, S. 2021. Photo Identification of Eurasian lynx (Lynx lynx L.) in Gorsk Kotar. Dissertation, Polytechnic in Karlovac.

Tropical Ecology, Assessment and Monitoring Network. 2011. Terrestrial Vertebrate Protocol Implementation Manual. vol. 3. Arlington, Texas. USA: Conservation International

US Fish and Wildlife Service. 2016. Recovery plan for the ocelot (Leopardus pardalis). https://www.fws.gov/southwest/es/arizona/Documents/SpeciesDocs/Ocelot/Ocelot_Final_Recovery_Plan_Signed_July_2016_new.pdf Accessed on 22 December 2023.

Verschueren S, Fabiano EC, Kakove M, Cristescu B, Marker L. 2022. Reducing identification errors of African carnivores from photographs through computer-assisted workflow. Mammalian Research 68:121-125 https://doi.org/10.1007/s13364-022-00657-z

Wiig O, Teixeira KS, Sena L, Oliveira HCS, Mendes-Oliveira AC. 2023. Identifying individual jaguars from camera-trap images using the HotSpotter program. Mammalia. 87:602-605. https://doi.org/10.1515/mammalia-2023-0071

Wolff N.M, Ferreguetti A.C, Tomas W.M, Bergallo H.G. 2019. Population density, activity pattern and habitat use of the ocelot Leopardus pardalis in an Atlantic Forest protected area, South eastern, Brazil. Hystrix, It. Journal of Mammalogy 30(2):120-125. https://doi.org/10.4404/hystrix-00214-2019

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.