Population dynamics and roost fidelity of Carollia brevicauda (Chiroptera: Phyllostomidae) in an artificial roost, in the northeastern Andes of Colombia
PDF (Español (España))

Keywords

Roost fidelity
breeding roost
capture-recapture
MARK program
fission-fusion

How to Cite

Gutierrez, Diego, and Diego J. Lizcano. 2022. “Population Dynamics and Roost Fidelity of Carollia Brevicauda (Chiroptera: Phyllostomidae) in an Artificial Roost, in the Northeastern Andes of Colombia”. Mammalogy Notes 8 (1), 203. https://doi.org/10.47603/mano.v8n1.203.
Received 2021-01-27
Accepted 2021-03-20
Published 2022-11-14

Abstract

Roosts impose selective pressures on bats. Roosts provide mating, hibernation, and nursery sites; promote social interactions, digestion of food; and offer protection from adverse weather and predators. Therefore, they have an important role in the ecology and evolution of these mammals. In this work we studied the population dynamics and fidelity of the bat Carollia brevicauda in an artificial roost over a year. We captured bats with a harp-trap between 6:00 p.m. and 12:00 a.m., with a sampling effort of 120 trap hours and a total of 91 tagged individuals. The results showed that the colony remained with a slightly variable number of individuals (15 ± 5) throughout the sampling period. The greater fidelity of females (1.25 ± 0.17) compared to males (0.85 ± 0.12) suggests that this refuge is used as a breeding site. Analysis with the capture-recapture method, according to the Cormack-Jolly-Seber model, indicates that the population is 260 individuals. The recapture rate was low, indicating a high mobility of the individuals, which may be associated with group fission-fusion social behavior. The data suggest that females synchronize gestation to give birth in the rainy season when there is greater availability of food resources and that human constructions, having characteristics of permanent shelters, offer favorable conditions for the reproduction and maternity of this species.

https://doi.org/10.47603/mano.v8n1.203
PDF (Español (España))

References

Alviz A. 2014. Dinámica temporal de la dieta de Carollia perspicillata en la cueva Macaregua, Santander-Colombia. Pontificia Universidad Javeriana.

Amstrup S, Mcdonald T, Manly B. 2005. Handbook of Capture-Recapture Analysis. New Jersey: Princeton university Pres.

Bonaccorso FJ, Smythe N. 1972. Punch-Marking Bats: An Alternative to Banding. Journal of Mammalogy. 53(2):389–390. https://doi.org/10.2307/1379186

Brigham RM. 1991. Flexibility in foraging and roosting behaviour by the big brown bat (Eptesicus fuscus). Canadian Journal of Zoology. 69(1):117–121. https://doi.org/10.1139/z91-017

Burnham K, Anderson D. 2002. Model selection and multimodel inference: A practical information. Theoretic approach. Springer New York.

Chaverri G, Kunz TH. 2006. Roosting Ecology of the Tent-Roosting Bat Artibeus watsoni (Chiroptera: Phyllostomidae) in Southwestern Costa Rica1. Biotropica. 38(1):77–84. https://doi.org/10.1111/j.1744-7429.2006.00107.x

Chaverri G., Quirós O.E., Gamba-Rios M. and Kunz, T.H. 2007, Ecological Correlates of Roost Fidelity in the Tent-Making Bat Artibeus watsoni. Ethology, 113: 598-605. https://doi.org/10.1111/j.1439-0310.2007.01365.x

Cloutier D, Thomas DW. 1992. Mammalian Species. Carollia perspicillata. The American Society of Mammalogists. 417:1–9.

Couzin ID, Laidre ME. 2009. Fission & fusion populations. Current Biology. 19(15):R633–R635. https://doi.org/10.1016/j.cub.2009.05.034

Cryan PM, Bogan MA, Yanega GM. 2001. Roosting habits of four bat species in the Black Hills of South Dakota. Acta Chiropterologica. 3(1):43–52.

Dool SE. 2020. Conservation Genetic Studies in Bats. In: Ortega J, Maldonado JE, editors. Conservation Genetics in Mammals. Cham: Springer International Publishing. p. 29–62. https://doi.org/10.1007/978-3-030-33334-8_3

Emmons L, Feer F. 1997. Neotropical Rainforest Mammals. A field guide. 2 edition. Illinois: The University of Chicago Press.

Fleming TH, Heithaus ER, Sawyer WB. 1977. An Experimental Analysis of the Food Location Behavior of Frugivorous Bats. Ecology. 58(3):619–627. https://doi.org/10.2307/1939011

Gallardo AO, Lizcano DJ. 2014. Organización social de una colonia del murciélago Carollia brevicauda en un refugio artificial, Bochalema, Norte de Santander, Colombia. Acta Biológica Colombiana. 19(2):113–121. https://doi.org/10.15446/abc.v19n2.30207

Holdridge LR. 1947. Determination of World Plant Formations From Simple Climatic Data. Science. 105(2727):367–368. https://doi.org/10.1126/science.105.2727.367

Hoyle SD, Pople AR, Toop GJ. 2001. Mark–recapture may reveal more about ecology than about population trends: Demography of a threatened ghost bat (Macroderma gigas) population. Austral Ecology. 26(1):80–92. https://doi.org/10.1111/j.1442-9993.2001.01092.pp.x

Kerth G, Reckardt K. 2003. Information transfer about roosts in female Bechstein’s bats: an experimental field study. Proceedings of the Royal Society of London Series B: Biological Sciences. 270(1514):511–515. https://doi.org/10.1098/rspb.2002.2267

Kerth G, Safi K, König B. 2002. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behavioral Ecology and Sociobiology. 52(3):203–210. https://doi.org/10.1007/s00265-002-0499-6

Kunz T, Lumsden L. 2003. Ecology of cavity and foliage roosting bats. In: Kunz T, Fenton M, editors. Bat Ecology. Chicago: University of Chicago Press. p. 3–89.

Kunz TH. 1982. Ecology of Bats. Boston, MA, Plenum Press.

Kurta A, Bell GP, Nagy KA, Kunz TH. 1989. Energetics of Pregnancy and Lactation in Freeranging Little Brown Bats (Myotis lucifugus). Physiological Zoology. 62(3):804–818

Lindenmayer DB, Lacy RC, Viggers KL. 1998. Modelling survival and capture probabilities of the mountain brushtail possum (Trichosurus caninus) in the forests of south-eastern Australia using trap-recapture data. Journal of Zoology. 245(1):1–13. https://doi.org10.1111/j.1469-7998.1998.tb00066.x

Medina DM, Torres JP. 2018. Apuntes sobre la estructura social de Carollia perspicillata (Chiroptera, Phyllostomidae) en la cueva Macaregua, Santander, Colombia. Revista Biodiversidad Neotropical. 8(1):14–21.

McCracken GF, Bradbury JW. 1981. Social organization and kinship in the polygynous bat Phyllostomus hastatus. Behavioral Ecology and Sociobiology. 8(1):11–34. https://doi.org/10.1007/BF00302840

MCLellan L. 1984. A morphometric analisis of Carollia (Chiroptera, Phyllostomidae). Americam Museum of Natual History. 2791:1–5.

Metheny JD, Kalcounis-Rueppell MC, Willis CKR, Kolar KA, Brigham RM. 2008. Genetic relationships between roost-mates in a fission–fusion society of tree-roosting big brown bats (Eptesicus fuscus). Behavioral Ecology and Sociobiology. 62(7):1043–1051. https://doi.org/10.1007/s00265-007-0531-y

Ibouroi MT, Arnal V, Cheha A, Dhurham SAO, Montgelard C, Besnard A. 2021. Noninvasive genetic sampling for flying foxes: a valuable method for monitoring demographic parameters. Ecosphere. 12(7):e03327. https://doi.org/10.1002/ecs2.3327

Jan P-L, Lehnen L, Besnard A-L, Kerth G, Biedermann M, Schorcht W, Petit EJ, Le Gouar P, Puechmaille SJ. 2019. Range expansion is associated with increased survival and fecundity in a long-lived bat species. Proceedings of the Royal Society B: Biological Sciences. 286(1906):20190384. https://doi.org/10.1098/rspb.2019.0384

Pryde MA, O’Donnell CFJ, Barker R. 2005. Factors influencing survival and long-term population viability of New Zealand longtailed batsb (Chalinolobus tuberculatus): implications for conservation. Biological Conservation. 126:175–185.

Racey PA. 1982. Ecology of bat reproduction. In: Ecology of bats. New York: Plenum Press. p. 425.

Rancourt SJ, Rule MI, O’Connell MA. 2007. Maternity roost site selection of big brown bats in ponderosa pine forests of the Channeled Scablands of northeastern Washington State, USA. Forest Ecology and Management. 248(3):183–192. https://doi.org/10.1016/j.foreco.2007.05.005

Royle JA, Fuller AK, Sutherland C. 2018. Unifying population and landscape ecology with spatial capture–recapture. Ecography. 41(3):444–456. https://doi.org/10.1111/ecog.03170

Santos-Moreno A, Hernández-Aguilar I. 2020. Estimation of bat colony size even with low recapture rates: an example based on the Cormack-Jolly-Seber model in Oaxaca, México. Revista de Biología Tropical. 69(1). https://doi.org/10.15517/rbt.v69i1.38777

Seckerdieck A, Walther B, Halle S. 2005. Alternative use of two different roost types by a maternity colony of the lesser horseshoe bat (Rhinolophus hipposideros). Mammalian Biology. 70(4):201–209. https://doi.org/10.1016/j.mambio.2004.10.002

Sedgeley JA, O’Donnell CFJ. 1999. Factors influencing the selection of roost cavities by a temperate rainforest bat (Vespertilionidae: Chalinolobus tuberculatus) in New Zealand. Journal of Zoology. 249(4):437–446. https://doi.org/10.1111/j.1469-7998.1999.tb01213.x

Sendor T, Simon M. 2003. Population dynamics of the pipistrelle bat: effects of sex, age and winter weather on seasonal survival. Journal of Animal Ecology. 72(2):308–320. https://doi.org/10.1046/j.1365-2656.2003.00702.x

Tamsitt JR, Valdivieso D. 1986. Variación morfométrica en el murciélago Sturnira magna (Chiroptera: Phyllostomidae). Caldasia. 15(71-75 SE-):743–760.

Thies W, Kalko EK V. 2004. Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos. 104(2):362–376. https://doi.org/10.1111/j.0030-1299.2004.12747.x

Torres DA, Henao-Isaza JR, Castaño JH. 2018. Reproductive Pattern of the Silky Short-Tailed Bat Carollia brevicauda (Chiroptera: Phyllostomidae) in the Andes of Colombia. Mammal Study. 43(2):133–139. https://doi.org/10.3106/ms2017-0082

Tuttle M. 1976. Biology of bats of the New World family Phyllostomatidae. In: Baker R, Jones J, Carter D, editors. Biology of bats of the New World family Phyllostomatidae. Vol. no.13 (197. Lubbock : Museum Texas Tech University, Texas. p. 71–88.

White GC, Burnham KP. 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46 Supplement.:120–138.

Willis CKR, Brigham RM. 2007. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behavioral Ecology and Sociobiology. 62(1):97–108. https://doi.org/10.1007/s00265-007-0442-y

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.