Illegal Wildlife Trade gives insights into suspected Feline Panleukopenia Virus (FPV) Occurrence in *Puma concolor*

Karime Angarita-Corzo¹, Luz Duarte-Rodriguez², Julián Arango-Lozano³*¹

¹ Escuela de Medicina Veterinaria. Facultad de Ciencias Agrarias. Universidad de Antioquia, Carrera 75 # 65-87, 050034, Medellín, Colombia.
² Grupo de Investigación en Ciencias animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Calle 30ª #33-51, 680006, Bucaramanga, Colombia.
³ Maestría en Ciencias Biológicas, Universidad de Caldas, Calle 65 #26-10, 170001, Manizales, Colombia

* Correspondence: arangolozanoj1@gmail.com

Resumen

El tráfico y comercio ilegal de fauna silvestre es una grave amenaza para la biodiversidad, alterando los ecosistemas y provocando la disminución de poblaciones animales a nivel mundial. Este estudio examina la potencial presencia del Virus de la Panleucopenia Felina (FPV) en un juvenil de *Puma concolor* rescatado de cautiverio. Los resultados de la histopatología y las detecciones macroscópicas revelaron diversas anomalías consistentes con la infección por FPV, describiendo el impacto de las enfermedades virales en los felinos salvajes. Este caso resalta el potencial papel de los felinos silvestres como reservorios para la transmisión del FPV y destaca el mayor riesgo de enfermedades asociado al comercio ilegal de vida silvestre. La detección temprana de patógenos es crucial para intervenciones oportunas que prevengan brotes de enfermedades. El diagnóstico integral y las estrategias de manejo adaptadas a especies de vida silvestre son esenciales para salvaguardar la biodiversidad y mitigar la transmisión de enfermedades zoonóticas. Al implementar estas medidas, el estudio enfatiza la importancia de abordar el vínculo entre el comercio ilegal de vida silvestre, las enfermedades virales y la conservación de la biodiversidad.

Palabras clave: Biología de la conservación, Enfermedades silvestres, León de montaña, Transmisión zoonótica.

Abstract

Illegal wildlife trade poses a grave threat to biodiversity worldwide, with viral diseases such as Feline Panleukopenia Virus (FPV) affecting the ecosystems health and biodiversity. This study examines a juvenile *Puma concolor* rescued from illegal trade in Colombia, revealing...
a possible FPV infection through histopathological and macroscopic detections. The findings highlight FPV's impact on wild felids, suggesting wild cats' potential role as reservoirs for transmission. This underscores the heightened disease risk associated with illegal wildlife trade. Early pathogen detection is crucial for timely interventions to prevent disease outbreaks. Comprehensive diagnostics and tailored management strategies for wildlife species are essential for safeguarding biodiversity and mitigating zoonotic disease transmission. By implementing these measures, the study emphasizes the importance of addressing the nexus between illegal wildlife trade, viral diseases, and biodiversity conservation.

Keywords: Conservation biology, Cougar, Wildlife disease, Zoonotic transmission.

Illegal wildlife trade poses a significant threat to biodiversity by driving the decline of numerous species (Broad et al., 2014; Rush et al., 2021; Hughes et al., 2023). The unsustainable exploitation of wildlife for commercial gain disrupts ecosystems, leading to population declines and loss of genetic diversity (Laikre et al., 2010; Hughes et al., 2023). It directly impacts endangered species, pushing them closer to extinction, while also disrupting food chains and ecosystem functions (Duffy et al., 2016; Van 2016; Kumari & Deepali 2021; Hinsley et al., 2023). Furthermore, the illegal wildlife trade exacerbates the risk of disease transmission between domestic and wildlife (Travis et al., 2011; Shivaprakash et al., 2021), by trafficking animals across borders, pathogens can spread rapidly, potentially leading to outbreaks among vulnerable wildlife populations (Bezerra-Santos et al., 2021; Rush et al., 2021; Hinsley et al., 2023). This not only poses a direct threat to biodiversity but also increases the likelihood of zoonotic diseases spilling over into human populations, posing significant public health risks (Bezerra-Santos et al., 2021; Hughes et al., 2023).

The Feline Panleukopenia Virus (FPV), commonly known as Feline Parvovirus, represents a formidable threat within the Family Felidae, impacting domestic and wild cat populations (Durry & Capece, 2012; Kim et al., 2013; Truyen & Parrish, 2013; Gilbert et al., 2023). While extensively studied in domestic species, the influence of FPV on wild felids remains a subject of growing concern and scientific inquiry (Duarte et al., 2009; Barrs, 2019; González et al., 2021). Reports of FPV infection in wild animals underscore the breadth of its impact, with documented cases including two adult snow leopards (Panthera uncia) at Blank Park Zoo in late 1988, despite being vaccinated (Fix et al., 1989), also in lynx (Lynx lynx) and in a European wildcat (Felis silvestris silvestris; Wasieri et al., 2009). Furthermore, fatal instances of FPV infection have been observed in a white tiger (Panthera tigris) and an African lion (Panthera leo) at Lisbon Zoo, as well as a leopard cub (Panthera pardus) at Nagpur Wildlife Rescue Center, highlighting the severity and varied manifestations of the disease (Duarte et al., 2009; Kolangath et al., 2023). Here we present a study case on a rescued juvenile Puma concolor from illegal trade diagnosed with suspected Feline Panleukopenia in eastern Colombia.

Case Report: On October 9, 2017, in the municipality of Bucaramanga, Department of Santander, Colombia, the environmental authority: Corporación Autonoma Regional de Santander (CAS), delivered a juvenile Cougar (Puma concolor) to the non-profit wildlife organization Cabildo Verde; veterinarian facilities in Cristo Rey (7.133908° N, -73.128278° W, elevation 959 m), the juvenile was rescued from captivity due to illegal trade within the rural zone of central Santander, Andean region of Colombia. The cougar underwent medical
intervention, including specialized tests such as thoracoabdominal ultrasound, as part of the preventive medicine plan upon entering quarantine. This procedure aims to visualize and assess possible anomalies in structures within the thoracic and abdominal cavities. Additionally, intravenous fluid treatment was administered to compensate for a detected 5% dehydration.

On October 21, 2017, twelve days after reception, and with no initial anomalies detected, the juvenile cougar was transferred to Cabildo Verde Natural Reserve in Sabana de Torres, Santander, Colombia (7.35061°N, -73.49676°W, elevation 161 m), to initiate rehabilitation procedures. However, on October 23, 2017, the cougar exhibited signs of alertness, weakness, and dehydration during a physiological evaluation. Despite immediate hydration measures, the animal died suddenly.

In accordance with post-death protocols, the animal’s body was placed in red bags and stored in a biological waste freezer for subsequent transfer to the veterinary facilities of Universidad Cooperativa de Colombia (coordinates: 7.128594°N, -73.113008°W, elevation 1027 m). On October 27, 2017, a necropsy was performed on the individual, and samples were extracted from vital organs including the heart, spleen, lungs, kidneys, liver, stomach, and intestines for histopathological analyses. Despite four days passing since the animal’s death, no macroscopic changes in organs, which may affect subsequent histopathological analyses (Figure 1).

The macroscopic inspection revealed various abnormalities, including: deteriorated body condition, spleen congestion, hepatomegaly with altered structural edges, liver congestion, distended gallbladder, presence of mucoid and hemorrhagic content in the stomach, omental adhesions to abdominal organs, hyperemic and segmented hemorrhage in the small intestine walls, bile discoloration in the large intestine, hemorrhagic enteritis in the lumen, reduced size of submandibular and inguinal lymph nodes, and paleness in the cortical area and renal parenchyma. (Figure 1).

![FIGURE 1. Detailed view of necropsy of the cougar; (a) external and internal view of the animal, (b) congested spleen (white arrow), (c) stomach with hemorrhagic spots, (d) large intestine with discoloration of bile and section of small intestine with segmental hemorrhage indicating hemorrhagic enteritis.](image-url)
Histopathology results revealed splenic lymphoid dysplasia and lymphadenitis, interstitial pneumonia, suppurative nephritis, chronic cystitis, and mild necrotic gastroenteritis. The organs exhibiting lesions consistent with possibly feline parvovirus pathogenesis included the intestine. These lesions manifested as a flattened and thinned epithelium, accompanied by shortened and atrophied villi. This condition led to a loss of osmotic regulation, thereby causing diarrhea frequently accompanied by blood and mucus (Stuetzer & Hartmann 2014; Azizah 2023). The spleen with necrosis and lymphocytosis since virus replication is reported in this organ (Truyen & Parrish 1992; Kim et al., 2013). Finally, in kidneys with lesions related to a bacterial septicemic process with displacement of epithelial cells towards the lumen and karyolytic necrosis, the epithelial cells of the renal tubules show karyolysis and pyknosis, the latter coinciding with the pathological results of *P. concolor* (Sim Lam et al., 2020).

Various secondary conditions, including hepatomegaly, lymph node atrophy, and splenic congestion, observed in the individual, may arise from factors such as medication ingestion, nutritional deficiencies, immunosuppression, or opportunistic infections (Willard & Twedt 2012). Considering the clinical presentation, differential diagnoses involving pathogens such as Escherichia coli and Rotavirus were considered relevant based on symptomatic and histopathological evidence (Wronski et al., 2020, Gabriel et al., 2023). Despite the inability to conduct specialized serological tests due to the circumstances of the case, the diagnosis relies on clinical manifestations and histopathological findings.

The lack of comprehensive diagnostics for wildlife animals presents a challenge in providing timely medical assistance (Duarte et al., 2009; Ryser-Degiorgis 2013; Bird & Mazet 2018). In wild felids, early detection of rare viruses like FPV is crucial for initiating appropriate clinical interventions and management strategies (Parrish et al., 2008; Carreño et al., 2021; Hartmann et al., 2021). Implementing specialized diagnostic techniques tailored to wildlife species, such as non-invasive sampling methods and rapid field tests, can enhance early detection capabilities (Furtado & Filoni 2008; Ryser-Degiorgis 2013; Candela et al., 2019).

The early detection of pathologies is vital to prevent the release of diseased animals into natural habitats. Without proper diagnosis, released animals may serve as vectors for diseases, potentially endangering wildlife populations (Kock et al., 2010; Sainsbury & Vaughan-higgins 2012; Carreira et al., 2019). Prompt identification of illnesses ensures that only healthy individuals are reintroduced, safeguarding the health and integrity of ecosystems (Dubois et al., 2017; Hughes et al., 2023). Furthermore, it is imperative to emphasize that those involved in the rehabilitation and reintroduction of wildlife must always verify the health status of animals (Laikre et al., 2010; Foley et al., 2013; Tuzio 2021). Conducting thorough examinations and providing solid evidence that animals slated for reintroduction are free from such diseases is crucial (Bird et al., 2018). This practice not only ensures the welfare of individual animals but also mitigates the risk of introducing pathogens into wild populations, thereby safeguarding ecosystem health and integrity (Sainsbury & Vaughan-higgins 2012; Shivaprakash et al., 2021).

The cougar, rescued from a rural area in Colombia, is believed to have contracted the suspected feline parvovirus (FPV) through contact with domestic cats (Kim et al., 2013), which serve as the primary transmission vector during captivity. Whether or not the animal would have been reintegrated into its natural habitat, its time spent in Cabildo Verde could have posed health risks to other animals, underscoring the importance for environmental agencies to implement appropriate measures for relocating trafficked and previously
captive wildlife. This case of suspected FPV in the *Puma concolor* highlights the potential role of wild cats as reservoirs or vectors for the transmission of the virus between domestic and wild cat populations (Nájera et al., 2021; Tuzio 2021); while Illegal wildlife trade exacerbates this risk by promoting the transport and trade of potentially infected animals across regions (Carreira et al., 2019), increasing the likelihood of zoonotic transmission and the emergence of new diseases in wildlife populations (Travis et al., 2011; Shivaprakash et al., 2021).

ACKNOWLEDGMENTS

The authors express sincere gratitude to Universidad Cooperativa de Colombia-Bucaramanga and Cabildo Verde Natural Reserve for their invaluable support in providing information and facilitating access to their facilities.

ETHICAL CONSIDERATIONS

All clinical protocols and the management of the individual *Puma concolor*, which succumbed to suspected Feline Panleukopenia virus, adhered strictly to the guidelines established by the bioethical research committee of Universidad Cooperativa de Colombia, as outlined in agreement No. 02 dated April 28, 2006.

REFERENCES

